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A simulation study of the magnetic electron drift vortex �MEDV� mode turbulence in a magnetoplasma in
the presence of inhomogeneities in the plasma temperature and density, as well as in the external magnetic
field, is presented. The study shows that the influence of the magnetic field inhomogeneity is to suppress
streamerlike structures observed in previous simulation studies without background magnetic fields. The
MEDV mode turbulence exhibits nonuniversal �non-Kolmogorov-type� spectra for different sets of the plasma
parameters. In the presence of an inhomogeneous magnetic field, the spectrum changes to a 7/3 power law,
which is flatter than without magnetic field gradients. The relevance of this work to laser-produced plasmas in
the laboratory is briefly mentioned.

DOI: 10.1103/PhysRevE.79.066404 PACS number�s�: 52.35.Ra, 52.35.Kt, 52.50.Jm, 98.62.En

I. INTRODUCTION

The generation of magnetic field in laser-produced plas-
mas in the laboratory �1–6� and in the universe �7–11� is an
fascinating and rich field of research. Possible mechanisms
to spontaneously generate magnetic fields in a plasma in-
clude the Biermann battery �12�, which is associated with
nonparallel density and temperature gradients, and the Wei-
bel instability �13�, in which the electrons have a nonisotro-
pic temperature. The Weibel instability may be responsible
for the generation of large-scale magnetic fields in the Uni-
verse, as well as in inertial fusion plasmas �14–16�, while the
Biermann battery has been proposed as a possible mecha-
nism to produce megagauss magnetic fields in laser-
produced plasmas �1�. There are recent observations of
megagauss-field topology changes and structure formation in
laser-produced plasmas �17�. The observations of spontane-
ous generation of magnetic fields in plasmas �1,2� and effects
attributed to self-generated magnetic fields, such as transport
of energy along surfaces �18� and the insulation of laser-
heated electrons from the target interior �18,19�, inspired the
investigation of magnetic surface waves in plasmas �20�.
This model was generalized to investigate the generation of
magnetic fields from temperature and density gradients in the
plasma �21�. The nonlinear properties of MEDV modes in a
nonuniform plasma with the equilibrium density and electron
temperature gradients have been investigated analytically
without �22,23� and with �24� background magnetic fields.
The spectral and statistical properties �25�, as well as the
generation of large scale magnetic fields �26� by the mag-
netic electron drift vortex �MEDV� mode turbulence, have
been investigate both theoretically and numerically. The gen-
eration of steep non-Kolmogorov spectra of streamerlike
structures by MEDV turbulence has been observed in recent
simulation studies �27�.

In this paper, we report a simulation study of the MEDV
mode turbulence in the presence of gradients in the equilib-
rium electron temperature and electron density, as well as in
the background magnetic field. We concentrate our study on
the magnetic field effect and its influence on the spectral
properties of the MEDV mode turbulence. The MEDV mode
turbulence involve a competition between nonlinear zonal
flows �28�, which we define as nonlinear MEDV modes with
a finite scale in the direction of the equilibrium plasma den-
sity and temperature gradients and streamers that have a fi-
nite scale perpendicular to the plasma gradients. We will here
assume that the background magnetic field gradient is in the
same direction as the plasma gradients. Our work presented
here ignores collisional effects. The latter are discussed in
Ref. �29� that includes frictional and thermal forces, as well
as gradients of the unperturbed magnetic field.

The manuscript is organized in the following fashion. The
governing nonlinear equations for the two-dimensional �2D�
MEDV modes are presented in Sec. II. The results of com-
puter simulations are displayed in Sec. III, and the observed
spectral properties of the MEDV turbulence are discussed in
Sec. IV. Finally, the results are briefly summarized and
discussed in Sec V.

II. NONLINEAR EQUATIONS

We here derive the governing equations for nonlinearly
interacting 2D MEDV modes in an inhomogeneous plasma
containing equilibrium electron density, electron tempera-
ture, and background magnetic field gradients. Following
Ref. �22�, we will assume a 2D geometry in the xy plane,
where the perturbed magnetic field is directed along the z
axis so that B=B�x ,y , t�ẑ, where ẑ is the unit vector along
the z axis. The governing equations for the wave magnetic
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field B and electron temperature fluctuations T1 are given
by �22�
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respectively. Here e is the magnitude of the electron charge,
m is the electron mass, �0=1 /c2�0 is the magnetic perme-
ability in vacuum, c is the speed of light, �0 is the electric
permittivity in vacuum, and �=5 /3 is the ratio between the
specific heats. The equilibrium electron number density n0
and the electron temperature T0 are assumed to have a gra-
dient along the x axis. In Eqs. �1� and �2�, we have intro-
duced the Poisson bracket notation
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We have neglected the scalar nonlinearity �22� in Eq. �1�,
which becomes important only on time scales much larger
than the electron gyroperiod �22�. On a longer time scale the
effect of the scalar nonlinearity can be important, and nu-
merical simulations �30� indicate that it causes dipolar vorti-
ces to gradually transform to monopolar vortices.

Dividing the magnetic field as B=B0+B1, where B0 is the
large-scale background magnetic field and B1 is the pertur-
bations and assuming that the equilibrium quantities n0, T0,
and B0 depend only on the coordinate x, we have
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where we have used that �B0 ,T0�= �n0 ,B0�= �B0 ,�2B0�=0.
In order to investigate the basic properties of the nonlin-

ear system of Eqs. �4� and �5�, it is convenient to scale it with
its typical length and time scales. Noting that the character-
istic length scale of the system is the electron skin depth
�e=c /�pe, where �pe= �n0e2 /�0m�1/2 is the electron plasma
frequency, and that the typical time scale is the plasma inho-
mogeneity length scale divided by the thermal speed of the
electrons �22�, it is possible to cast systems �4� and �5� into
the dimensionless form

�
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where we have normalized the spatial coordinates x and y by
the electron skin depth �e, the time by �e /VTe�	�	�n�1/2, the
magnetic field by �m /e�VTe�	�	�n�1/2 /�e, and the temperature
fluctuations T1 by �	�	�n�1/2T0, where VTe= �Te /m�1/2 is the
electron thermal speed. The normalized background plasma
gradients are given by �n= �n0� /n0��c /�pe�, �= ���−1�n0� /n0
− �T0� /T0���c /�pe�, and the normalized magnetic field gradi-
ent by �B= �B0� /B0��c /�pe�, where the primes denote differ-
entiation with respect to x. The coordinate system is chosen
such that �n�0. With this normalization, �=+1 for ��0
and �=−1 for �	0. Hence, the only parameters in Eqs. �6�
and �7� are � and �B, where � only takes the values +1 or
−1.

Linearizing the system of Eqs. �6� and �7� and assuming
that B1 and T1 are proportional to exp�ikxx+ ikyy− i�t�, we
obtain the linear dispersion relation

�� − �Bky��� + k2�� − �Bky�� = ky
2� , �8�

where � and k= x̂kx+ ŷky are the frequency and wave vector,
respectively. Equation �8� has solutions of the form

� =
ky

2�1 + k2�
��B�1 + 2k2� 
 
�B

2 + 4�1 + k2��� . �9�

For �=−1, we have unstable MEDV modes for 4�1+k2�
��B

2 when ky �0. For �=+1, we have only stable MEDV
modes, and one can find zero-frequency waves when k
=1 /�B, in addition to the zero frequency zonal flows at ky
=0. In the limit �B→0 we retain the previous result �21,22�

� = 

ky


1 + k2

� , �10�

which predicts stable MEDV modes for ��0 and purely
growing MEDV modes for �	0. The unstable case �	0
corresponds to a situation where density and temperature
gradients are in the same direction and �T0� /T0��
��−1�n0� /n0. This instability gives rise to the generation of
magnetic field fluctuations and is related to the first-order
baroclinic ��n0��T1� effect, which shows the importance
of the temperature fluctuations for the instability to take
place �21�.

The nonlinear system possesses the conserved energy
integral

E =� � �B2 + ��B�2 +
T1

2

�
dxdy . �11�

We note that the total energy is independent of �B. For �=
+1 the energy integral is positive definite and thus does not
allow the growing of large amplitude magnetic fluctuations
from small-amplitude noise. For �=−1, however, the energy
integral is nondefinite and allows large-amplitude waves to
grow from the linear instability discussed above.

III. NUMERICAL STUDY

We have adapted the nonlinear fluid code that was devel-
oped to study the evolution of MEDV modes in �27� in the
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presence of equilibrium electron density and temperature
gradients, to also include a background gradient in the mag-
netic field. Consequently, the energy stored in these gradients
excite linear as well as nonlinear instabilities in a different
manner than that described in �27� because the nonlinear
mode coupling interactions are significantly modified by the
presence of both plasma and magnetic field gradients. Our
numerical code employs a doubly periodic spectral discreti-
zation of magnetic field and temperature fluctuations in
terms of its Fourier components, while nonlinear interactions
are deconvoluted back and forth in real and Fourier spectral
spaces. The time integration is performed by using the
fourth-order Runge-Kutta method. A fixed time integration
step is used. The conservation of energy given by Eq. �11� is
used to check the numerical accuracy and validity of our
numerical code during the nonlinear evolution of the mag-
netic field and temperature fluctuations. Varying spatial res-
olution �from 1282 to 5122�, time step �10−2 ,5�10−3 ,10−3�,
constant values of Kn�VT

2 /c2=0.1 and �2 /3�Kn�−KT�=0.1
are used to ensure the accuracy and consistency of our non-
linear simulation results. We also make sure that the initial
fluctuations are isotropic and do not influence any anisotropy
during the evolution. Nonlinear interactions can, however,
lead to anisotropic turbulent cascades by migrating spectral
energy in either ky �0 or kx�0 modes. The preference of
energy transfer in either of the modes is determined prima-
rily by the background gradients in magnetic or temperature
and density fields that, in nonlinearly saturated state, govern
the mode coupling interactions. In our present simulations,
we largely focus on two cases, viz �i� small amplitude and
�ii� large amplitude evolutions of turbulent fluctuations.
These two cases are characteristically different from each
other in terms of dominant nonlinear interactions. To com-
pare the effects of the amplitude we need to compare the
nonlinear terms �the vector nonlinearities� with the linear
terms, most importantly the coupling terms between the
magnetic field and temperature fluctuations. Hence, we can
compare the nonlinear term �B1 ,�2B1� to the coupling term
�T1 /�y in the dimensionless Eq. �6�. In the simulations �Figs.
1 and 2� we observed that the amplitudes of the dimension-
less magnetic field and temperature fluctuations are approxi-
mately the same for both the small and large amplitude cases
when the turbulence is fully developed. Hence we may use
T1�B1 and compare the nonlinear term �B1 ,�2B1� to
�B1 /�y. As an order of magnitude estimate, the spatial de-
rivatives are of the order 1 /L, where L is the typical length
scale of the fluctuations. Hence we have the order of magni-
tude estimates 	�B1 ,�2B1�	��1 /L�4	B1	2 and 	�B1 /�y	
��1 /L�	B1	. One can conclude that if B1�L3 then the linear
coupling term dominates and we have a case of weak turbu-
lence, while if B1�L3 or larger, then we have a fully non-
linear case with strong turbulence. In our simulations, the
fluctuations have typical length scales of L�1 �correspond-
ing to the electron skin depth in dimensional units� so that
	B1	�1 constitutes a weakly nonlinear case while B�1 is a
strongly nonlinear case. In dimensional units, B1 should be
replaced by �eB1 /m��e / �VTe�	�	�n�1/2� and L by L /�e so that
e	B1	 /m should be compared to �VTe /�e��	�	�n�1/2�L /�e�3 in
dimensional units. Since L /�e�1, we then have the weakly
nonlinear case e	B1	 /m� �VTe /�e��	�	�n�1/2 and the strongly

nonlinear case e	B1	 /m��VTe /�e��	�	�n�1/2 in dimensional
units.

The initial spectral distribution in the magnetic and tem-
perature fluctuations comprises a uniform isotropic and ran-
dom amplitude associated with the Fourier modes confined
to a smaller band of wave number �k	0.1 kmax�. While
spectral amplitude of the fluctuations is random for each
Fourier coefficient; it follows a k−1 or k−2 scaling. Note again
that our final results do not depend on the choice of the
initial spectral distribution. The spectral distribution set up in

FIG. 1. �Color online� Evolution of random turbulent fluctua-
tions initialized with small amplitude. Nonlinear turbulent interac-
tions lead to the formation of relatively large-scale flow directed
along the mean magnetic field in our 2D simulations. The saturated
structures in B, T, �2B, and B−�2B are shown in the figure. The
numerical resolution is 2562, the box dimension is 2�2, and the
parameters used are �=+1 and �B=0.5.

FIG. 2. �Color online� When the amplitude of initial fluctuations
in magnetic and temperature fields is large enough, the characteris-
tic of nonlinear interaction modify the flows observed in Fig. 1. The
diamagneticlike nonlinear interactions seem to dominantly suppress
the flow and lead to small scale isotropic turbulent fluctuations. This
is shown in B, T, �2B, and B−�2B.
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this manner initializes random scale turbulent fluctuations.
Since there is no external driving mechanism considered in
our simulations, turbulence evolves freely under the influ-
ence of self-consistent nonlinear interactions. Note however
that driven turbulence in the context of the MEDV mode will
not change inertial range spectrum to be described here. The
driving mechanism helps sustain turbulent interactions with-
out modifying the inertial range turbulent cascades. The ini-
tial isotropic fluctuations in magnetic and temperature fields
are evolved through nonlinear fluid Eqs. �6� and �7�. The
dominant nonlinear interactions in the inhomogeneous
MEDV modes are governed by ẑ��B ·��2B in magnetic
field equation. This nonlinearity is similar to the polarization
drift nonlinearity ẑ��� ·��2�, � being the electrostatic po-
tential fluctuations, in a two-dimensional Hasegawa-Mima-
Wakatani �HMW� model describing drift waves in inhomo-
geneous plasmas �31–34�. This nonlinearity characterizes
Reynolds stress forces that plays a critical role in the forma-
tion of zonal flows. Analogously, one can expect generation
of nonlinearly generated flows in underlying MEDV model
here. The temperature evolution, on the other hand, is gov-
erned by ẑ��T ·�B nonlinearity that is identical to a dia-
magnetic nonlinear term in HMW model. The role of this
nonlinearity has traditionally been identified as a source of
suppressing the intensity of nonlinear flows in drift-wave
turbulence. Nevertheless, the presence of the linear inhomo-
geneous background in both equations can modify the non-
linear mode coupling interactions in a subtle manner. Our
objective is to understand the latter in the context of nonlin-
ear interactions mediated by the inhomogeneous B and T
fields in MEDV modes.

We find from our small amplitude nonlinear evolution
case �see Fig. 1� that the nonlinear interactions in the inho-
mogeneous MEDV modes are typically led by the Reynolds-
stress-like nonlinearity, i.e., ẑ��B ·��2B, in the magnetic
field equation. Consequently, the mode structures in the satu-
rated turbulent state are dominated by the zonal-like flows,
as typically observed in the HMW model �31–34�. This is
demonstrated in Fig. 1 where large scale structures �zonal
flowlike, ky �0� along the background magnetic and tem-
perature field gradients are developed in B ,T ,�2B and B
−�2B fluctuations. Thus, small amplitude nonlinear evolu-
tion, as shown in Fig. 1, is consistent with the HMW model
of the inhomogeneous drift-wave turbulence. Our simula-
tions described in Fig. 1 can be contrasted with our previous
work �27� on the small amplitude case that was studied in the
absence of a background magnetic field gradient. In Ref.
�27�, we have shown that mode coupling interactions during
the nonlinear stage of evolution leads to the formation of
streamerlike structures in the magnetic field fluctuations as-
sociated with ky �0,kx�0. These structures were similar to
the zonal flows but contained a rapid kx variations, thus the
corresponding frequency is relatively large. The temperature
fluctuations in Fig. 1 of �27�, on the other hand, depict an
admixture of isotropically localized turbulent eddies and a
few stretched along the direction of the background inhomo-
geneity. Clearly, the presence of a background magnetic field
gradient reduces the kx variation in the steady-state flow. This
leads to a considerable modification in the final structures,
which now appear to look like zonal flows �and not the

streamers that were observed in the absence of a background
magnetic field�. Interestingly, the large amplitude case in our
simulations unravels a completely different scenario where
nonlinear mode coupling interactions in MEDV modes are
observed to suppress the steady-state flow. This is shown in
Fig. 2. The suppression of the zonal flowlike structures can
be understood in the context of the diamagneticlike nonlin-
earity that seems to modify the nonlinear mode coupling
interactions in the large amplitude evolution. This nonlinear-
ity, corresponding to a �T ,B� term in the temperature equa-
tion, becomes gradually strong enough to nullify the emer-
gence of the large scale zonal-flow-like structures. Hence,
the steady-state structures in Fig. 2 appear to possess more
small scale fully developed turbulent fluctuations. We con-
firm that this state is not entirely isotropic and the back-
ground gradients nonlinearly maintain the anisotropic cas-
cades in inhomogeneous MEDV modes. We elucidate this
point in the following section.

IV. ANISOTROPIC MEDV CASCADES

We quantify the degree of anisotropy mediated by the
presence of large-scale gradients in the magnetic and tem-
perature fields in the nonlinear 2D inhomogeneous MEDV
turbulence. In 2D turbulence, the anisotropy in the kx-ky
plane is associated with the preferential transfer of spectral
energy that empowers either of the kx and ky modes. The
anisotropy in the initial isotropic turbulent spectrum is trig-
gered essentially by the background anisotropic gradients
that nonlinearly migrate the spectral energy in a particular
direction. To measure the degree of anisotropic cascades, we
employ the following diagnostics to monitor the evolution of
kx mode in time. The kx mode is determined by averaging
over the entire turbulent spectrum that is weighted by kx,

kx�t� =
�k
	kxQ�k,t�	2

�k
	Q�k,t�	2

.

Here Q represents any of B, T, �2B, and B−�2B. Similarly,
the evolution of ky mode is determined by the following
relation:

ky�t� =
�k
	kyQ�k,t�	2

�k
	Q�k,t�	2

.

We can define an angle of anisotropy such that �
=tan−1�kx /ky�. It is clear from these expressions that the kx
and ky modes exhibit isotropy when kx�ky for which �
�45°. Any deviation from this equality leads to a spectral
anisotropy. We follow the evolution of kx and ky modes in
our simulations for increasing amplitude of the initial fluc-
tuations. Our simulation results describing the evolution of kx
and ky modes are shown in Fig. 3. It is evident from Fig. 3
that the initial isotropic modes kx�ky gradually evolve to-
ward an highly anisotropic state in that spectral transfer pref-
erentially occurs in the kx mode, while the same is sup-
pressed in ky mode. Consequently, the spectral transfer in kx
mode dominates the evolution and the mode structures show
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elongated structures along the y direction. With the increas-
ing amplitude of the initial fluctuations, there exists increas-
ing degree of anisotropy as illustrated in Fig. 3. The larger
the amplitude is, the stronger the nonlinear interactions are.
Correspondingly, there exists increasing degree of disparity
in the kx and ky modes owing primarily to the increasing
depletion in ky modes as shown in Fig. 3.

The increasing angle of anisotropy �in Fig. 3�, with the
increasing magnitude of the initial fluctuations, is ascribed to
the generation of highly asymmetric flows in our simula-
tions. We exemplify this point by means of Fig. 4 that de-
scribes evolution of the energy associated with the aniso-
tropic flows led predominantly by the ky =0 mode. Notably,
this mode is generated explicitly by the nonlinear interac-
tions. It is clear from this figure that growth rate of the gen-

eration of the anisotropic �dominated by the ky =0 mode�
flow is directly proportional to the magnitude of the initial
fluctuations. Thus the growth rate is higher when the ampli-
tude of the magnetic and temperature field is large, i.e.,
Bmax�Tmax=1.0. The smaller initial amplitude of the fluc-
tuations correspond to relatively weak nonlinear interactions
for which the generation of the ky =0 mode is insignificant.
The nonlinear interactions do not introduce anisotropy and
hence lead to nearly isotropic turbulent cascades. This is ob-
served clearly in Fig. 4 �see the curve corresponding to
Bmax�Tmax=0.1� which is consistent with the corresponding
curve in Fig. 3. In Fig. 4, each curve is normalized with its
own initial value to rescale all the curves on a single plot.
This further enables us to make a vis a vis comparison be-
tween the three different cases shown in Fig. 4. Also evident
from Fig. 4 is the large amplitude fluctuations that lead to the
higher growth rate of the anisotropic flows �see dashed lines
whose slope increases with the increasing amplitude of Bmax
and Tmax�. The increasing slope, i.e., growth, associated with
the anisotropic flows in our simulations is further consistent
with the increasing angle of anisotropy that is observed in
Fig. 3.

It is noteworthy from our simulations that the stronger
nonlinear interactions pile up an increasing amount of turbu-
lent energy in the ky =0 mode. Consequently, the turbulent
correlation length scales tend to decrease across the flows.
Hence the large amplitude simulations show decorrelated
flow structures in Fig. 2. This physically means that the non-
linear interactions led by the polarization and diamagnetic-
like terms in the presence of background gradients quench
the flow �that was observed along the x direction in Fig. 1� to
introduce reduced turbulent decorrelated structures.

While there exists a disparity in the spectral transfer of
energy corresponding to the kx and ky modes, the 2D volume
averaged turbulent spectrum follows a k−7/3 power law, as
shown in Fig. 5. This spectrum is steeper than that of the
HMW turbulence �31–34�. The steepness of the observed
spectrum can be ascribed to the coexistence of partially an-
isotropic flows and turbulent fluctuations in the steady-state
MEDV mode turbulence.
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FIG. 3. �Color online� Evolution of anisotropic mode structures
as described by kx and ky mode averaged over the entire turbulent
spectrum in inhomogeneous MEDV turbulence. Initially, kx=ky.
Progressive development of anisotropy kx�ky is ascribed to the
presence of background gradients in magnetic and temperature
fields for which the anisotropy angle �=tan−1�kx /ky� deviates con-
tinually from 45°.
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FIG. 4. �Color online� Energy associated with the anisotropic
flows that corresponds essentially to the nonlinear ky =0 modes.
Figure 4 depicts the self-consistently generated nonlinear flows lead
to turbulent anisotropy. The growth rate of the generation of aniso-
tropic flow is directly proportional to the amplitude of the initial
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V. SUMMARY AND CONCLUSIONS

In summary, we have investigated the properties of the
MEDV mode turbulence nonuniform magnetoplasma con-
taining gradients in the electron temperature, the electron
number density, and the external magnetic field. We find that
the influence of the magnetic field gradient is to suppress the
streamerlike structures observed in simulations without the
magnetic field gradient �27�. In addition, the steep spectra
changes to spectra with a 7/3 power law in the presence of
the magnetic field gradient. We also discussed the conditions
for an instability through a first-order baroclinic effect,
which would lead to the generation of magnetic fields under
conditions where the background density and temperature
gradients are in the same direction. It is noteworthy that the
anisotropic terms in our simulations become important when
the linear terms, corresponding to the gradients in magnetic

and temperature fields, compete with the nonlinear terms. In
such case, efficient migration of energy takes place between
the gradients and turbulent modes that primarily lead to the
nonlinear anisotropic flows. Our study could have relevance
for laser produced plasmas in the laboratory; spontaneously
generated magnetic fields and effects associated with self-
generated magnetic fields such as transport of energy along
surfaces and flux limitation of electrons have been observed
for many years.
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